Eigenvalue problems with sign-changing coefficients
نویسندگان
چکیده
We consider a class of eigenvalue problems involving coefficients changing sign on the domain of interest. We describe the main spectral properties of these problems according to the features of the coefficients. Then, under some assumptions on the mesh, we explain how one can use classical finite element methods to approximate the spectrum as well as the eigenfunctions while avoiding spurious modes. We also prove localisation results of the eigenfunctions for certain sets of coefficients. Version française abrégée Problèmes aux valeurs propres en présence de coefficients changeant de signe Nous nous intéressons au problème aux valeurs propres (1) posé dans un domaine borné Ω partitionné en deux régions Ω1, Ω2. Le problème (1) met en jeu des coefficients ς, μ que nous supposons constants non nuls sur Ω1, Ω2. Ces constantes peuvent être de signes différents. Nous fournissons d’abord des critères assurant que le spectre de (1) est discret, propriété qui n’est pas toujours satisfaite lorsqu’à la fois ς et μ changent de signe. Lorsqu’un seul coefficient (ς ou μ) change de signe, on peut aussi montrer que le spectre de (1) est réel, constitué de deux suites de valeurs propres (λ±n)n≥1 telles que limn→+∞ λ±n = ±∞. Dans un second temps, moyennant certaines hypothèses sur le maillage, nous expliquons comment on peut utiliser les méthodes éléments finis classiques pour approcher le spectre ainsi que les fonctions propres. Pour ce faire, nous utilisons la théorie d’approximation des opérateurs compacts développée notamment par Babuška et Osborn [2]. Il est à noter que lorsque ς et/ou μ change(nt) de signe, l’approximation numérique de (1) doit être réalisée avec soin pour éviter la pollution spectrale [11]. Nous établissons ensuite un résultat de localisation des fonctions propres u±n associées aux λ±n dans le cas où un seul coefficient (ς ou μ) change de signe. Plus précisément, nous prouvons que les u±n deviennent confinées ou bien dans Ω1, ou bien dans Ω2, lorsque n→ +∞. Enfin, nous présentons des tests numériques illustrant ce confinement, ainsi que la convergence des valeurs propres.
منابع مشابه
Global bifurcation and nodal solutions for fourth-order problems with sign-changing weight
In this paper, we shall establish unilateral global bifurcation result for a class of fourthorder eigenvalue problems with sign-changing weight. Under some natural hypotheses on perturbation function, we show that lk;0 is a bifurcation point of the above problems and there are two distinct unbounded continua, Ck þ and Ck , consisting of the bifurcation branch Ck from lk;0 , wher e lk is the kth...
متن کاملSubcritical Perturbations of Resonant Linear Problems with Sign-changing Potential
We establish existence and multiplicity theorems for a Dirichlet boundary-value problem at resonance. This problem is a nonlinear subcritical perturbation of a linear eigenvalue problem studied by Cuesta, and includes a sign-changing potential. We obtain solutions using the Mountain Pass lemma and the Saddle Point theorem. Our paper extends some recent results of Gonçalves, Miyagaki, and Ma.
متن کاملMountain pass and linking type sign-changing solutions for nonlinear problems involving the fractional Laplacian
where ⊂Rn (n≥ 2) is a bounded smooth domain, s ∈ (0, 1), (– )s denotes the fractional Laplacian, λ is a real parameter, the nonlinear term f satisfies superlinear and subcritical growth conditions at zero and at infinity. When λ≤ 0, we prove the existence of a positive solution, a negative solution and a sign-changing solution by combing minimax method with invariant sets of descending flow. Wh...
متن کاملSymmetric positive solutions of fourth order integral BVP for an increasing homeomorphism and homomorphism with sign-changing nonlinearity on time scales
In this paper, we consider the eigenvalue problems for fourth order integral boundary value problems on time scales for an increasing homeomorphism and homomorphism with sign changing nonlinearities. By using a fixed point index theorem, we give the existence of eigenvalue intervals in which there exist one symmetric positive solution to the problem. An example is also given to demonstrate the ...
متن کاملElectromagnetic scattering by periodic structures with sign-changing coefficients
We analyze well-posedness of a scattering problem of time-harmonic electromagnetic waves by periodic structures with sign-changing coefficients. Transmission problems for Maxwell’s equations with sign-changing coefficients in bounded domains have been recently studied by Bonnet-Ben Dhia and co-workers in the so-called T -coercivity framework. In this article we generalize such framework for per...
متن کامل